
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 179 (2006) 250–262
Field-dependent nuclear relaxation of spins 1/2 induced
by dipole–dipole couplings to quadrupole spins:

LaF3 crystals as an example

Danuta Kruk a,b,*, Oliver Lips a

a Institut für Festkörperphysik, TU Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
b Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland

Received 15 September 2005; revised 15 December 2005
Available online 19 January 2006
Abstract

A general theory of spin–lattice nuclear relaxation of spins I = 1/2 caused by dipole–dipole couplings to quadrupole spins S P 1,
characterized by a non-zero averaged (static) quadrupole coupling, is presented. In multispin systems containing quadrupolar and dipo-
lar nuclei, transitions of spins 1/2 leading to their relaxation are associated through dipole–dipole couplings with certain transitions of
quadrupole spins. The averaged quadrupole coupling attributes to the energy level structure of the quadrupole spin and influences in this
manner relaxation processes of the spin 1/2. Typically, quadrupole spins exhibit also a complex multiexponential relaxation sensed by the
dipolar spin as an additional modulation of the mutual dipole–dipole coupling. The proposed model includes both effects and is valid for
an arbitrary magnetic field and an arbitrary quadrupole spin quantum number. The theory is applied to interpret fluorine relaxation
profiles in LaF3 ionic crystals. The obtained results are compared with predictions of the ‘classical’ Solomon relaxation theory.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Field-dependent relaxation studies can be an important
source of information on dynamic properties of a system,
provided that an adequate theoretical model is available.
Fast development of field cycling techniques gives the pos-
sibility to perform relaxation experiments in a wide range
of magnetic fields for a variety of multispin systems. In this
context it is of primary importance to provide a reasonable
theoretical tool for modeling and interpreting observed
field dependencies of relaxation processes. The applicability
of the ‘classical’ Solomon [1] and Solomon–Bloemberger–
Morgan (SBM) descriptions [2–4] is strongly limited. The
formulas are a special case of the general Redfield relaxa-
tion theory [5–7], based on a perturbation approach. The
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perturbation treatment assumes that a total spin Hamilto-
nian can be divided into two parts: the main, unperturbed
part, which determines the energy level structure of the sys-
tem, and the perturbing, time-dependent part with zero
average, which causes transitions between the energy levels.
The Solomon approach as well as its extension, including
relaxation processes of the spin S (the SBM theory), have
been developed under the assumption that Zeeman interac-
tions are dominant for both spins relaxing through their
mutual dipole–dipole coupling. This treatment breaks
down for systems containing quadrupole spins, which
exhibit a non-zero static quadrupole coupling. It can nei-
ther be applied to the quadrupole spin, S P 1, nor the
dipolar spin, I = 1/2, coupled to the quadrupole one. The
energy level structure of the quadrupole, high spin is deter-
mined by a superposition of a static quadrupole interaction
and a Zeeman coupling, and depends on the orientation
of the electric field gradient tensor at the position of the
spin, with respect to the direction of the applied external
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magnetic field. Only in the high field limit, when the Zee-
man coupling is much stronger than the quadrupole inter-
action the high spin is quantized in the laboratory frame.
The energy level structure of the quadrupole spin S, dom-
inated at low magnetic fields by the static quadrupole inter-
action, as well as its complex dynamics resulting from this
quantization, become relevant for relaxation processes of
the dipolar spin I, when there is an I–S coupling.

In this paper, we elucidate effects of the quadrupolar
coupling affecting relaxation dynamics of spins 1/2 via
the mutual, dipolar spin-quadrupole–spin dipole–dipole
interactions.

In multispin systems containing quadrupolar and dipo-
lar nuclei, transitions of the spin 1/2 leading to its relaxa-
tion are associated through the dipole–dipole coupling to
certain transitions of the quadrupole spin. Since dipolar
interactions involve two spins, the static quadrupole cou-
pling influences magnetic field dependencies of the dipolar
relaxation of the spin I, by affecting the frequencies of the
combined I–S transitions. In addition, the high spin nuclei
can provide through their own relaxation mechanism a
source of relaxation for dipolar nuclei. From the perspec-
tive of the spin 1/2 nucleus the relaxation processes of
the quadrupole nucleus contributes to time fluctuations
of the dipole–dipole coupling in a manner similar to other
stochastic processes like for example jump diffusion. How-
ever, the quadrupole high-spin nuclei exhibit complex, mul-
tiexponential relaxation. Under certain motional
conditions, discussed in the paper, well defined relaxation
rates can be assigned to individual coherences associated
with transitions of the quadrupole spin. Since the dipolar
spin senses the various quadrupole relaxation rates corre-
sponding to particular quadrupole spin modes and coher-
ences, fluctuations of the mutual dipole–dipole coupling
cannot be described any longer by one characteristic time
constant. One needs to consider a set of correlation times
containing the quadrupole relaxation contributions to the
modulations of the dipole–dipole axis. It should be empha-
sized that magnetic field dependencies of the quadrupole
relaxation rates are also affected by the static quadrupole
coupling. If other dynamic processes affecting the dipole–
dipole coupling (like for example jump diffusion) are on a
rapid time scale relative to the quadrupole relaxation, the
spread of the dipolar correlation times around the main
value corresponding to the fastest motional process,
becomes negligible. However, even in this motional limit,
relaxation of the dipolar spin is affected by the static part
of the quadrupole coupling attributing to the energy level
structure of the quadrupole spin and influencing in this
manner the dynamic of the spin 1/2. It is important to
point out that our approach has also some limitations.
We assume that the dipolar as well as quadrupole spins ful-
fill the conditions of the Redfield theory [5–7]; otherwise
one could not explicitly define time-independent relaxation
rates. The second limitation concerns the averaged (static)
quadrupole coupling. All considerations presented here are
dedicated to systems containing quadrupole spins, which
exhibit a non-zero averaged quadrupole coupling attribut-
ing to their energy level structure and influencing relaxa-
tion processes of spins 1/2. It means, that we consider
systems where eventual fluctuations (caused for example
by a rotational motion) of the averaged quadrupole cou-
pling relative to the laboratory frame are much slower than
the relaxation of the quadrupole spin. The averaged quad-
rupole coupling is sensed by the quadrupole spin as a static
interaction contributing to its energy level structure only
under this motional condition. Thus, our model is dedicat-
ed mainly to solid state systems, where this condition is
usually fulfilled. In general, depending on the strength of
the averaged quadrupole coupling and the time scale of
its fluctuation relative to the laboratory frame, the aver-
aged quadrupole interaction can be sensed by the quadru-
pole spin as a main, static interaction, as a relaxation
mechanism, or even it can bring the quadrupole spin out-
side validity regimes of the Redfield relaxation theory. This
problem has been discussed in detail in the context of elec-
tron spin relaxation and a static zero field splitting in [8].

Nuclear relaxation of a spin 1/2 originating from a
dipole–dipole coupling to another spin with a non-Zeeman
energy level structure and its own (unrelated to any interac-
tions with the spin 1/2) relaxation mechanism can be con-
sidered in a much more general context. A good example is
the paramagnetic relaxation enhancement of a nuclear spin
1/2 (for example water protons) caused by its dipole–dipole
coupling to an electron spin with energy levels resulting
from a superposition of the electron Zeeman interaction
and the zero field splitting and relaxing through time fluc-
tuations of the zero field splitting tensor [9–12]. Since the
quadrupole coupling as well as the zero field splitting are
one-spin interactions expressed in terms of second-rank
tensor operators, there are deep analogies between the
two systems of interacting spins. We formulate in this
paper, following the line of analogies between quadrupole
and electron spin dynamics, a general description of
spin–lattice relaxation of a dipolar spin 1/2 induced by its
coupling to an ensemble of quadrupole spins, valid for an
arbitrary magnetic field and arbitrary quadrupole spin
quantum number. Our approach includes the effects of
the static quadrupole coupling as well as the multiexponen-
tial quadrupole relaxation. We provide in this way a tool
appropriate for an analysis of field-dependent relaxation
studies for a variety of solid state systems containing dipo-
lar as well as quadrupole spins with mutual dipole–dipole
couplings. Our description can be treated as a ‘quadrupole’
counterpart of the paramagnetic relaxation enhancement
theory [9,11,12] dedicated to solid-state systems.

We discuss the theoretical model in a close relation to
fluorine spin–lattice relaxation in LaF3 crystals, treating
them as an example of systems under interest.

Section 2 contains a description of spin interactions and
motional processes within the LaF3 lattice relevant for the
fluorine spin relaxation. Section 3 presents a general theory
of spin–lattice relaxation of spins 1/2 induced by couplings
to quadrupole spins, which is adapted in Section 4 to the
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exemplary case of field-dependent fluorine spin relaxation
in the LaF3 crystal lattice. Section 5 contains examples of
the fluorine relaxation profiles analyzed within the pro-
posed theory and also illustrative comparisons of the pres-
ent treatment with the classical Solomon approach [1].
Concluding remarks are covered in Section 6.

2. Mechanisms of fluorine spin relaxation in LaF3 crystals

Our considerations begin with a discussion of mecha-
nisms of fluorine spin relaxation in LaF3 crystals. We shall
point out the necessity to formulate a proper description of
relaxation processes of the fluorine spins caused by their
dipole–dipole couplings to the quadrupole, lanthanum
spins.

The crystal LaF3 has the tysonite structure ðP�3c1Þ, in
which the fluorine ions occupy three distinct positions:
F1, F2 and F3, in the ratio 12:4:2 [13]. The sites F2 and F3

are structurally almost equivalent and therefore they can
be treated as one in studies of fluorine relaxation processes
[14]. The structure of LaF3 is illustrated in Fig. 1, where
views along and perpendicular to the c-axis are shown.
We shall denote from now the two distinct sublattices F1

and F2–F3 as FA and FB, respectively. Fluorine spins
belonging to each of these sublattices are coupled by
Fig. 1. Unit cell of LaF3. The upper part shows a view perpendicular to
the c-axis, the lower part a view along the c-axis. The lanthanum ions are
represented by the large spheres, the F1-ions are shown as light spheres,
the F2 and F3 ions as dark spheres.
dipole–dipole interactions to fluorine spins from the same
sublattice as well as to those from the second one, and they
are also coupled to the lanthanum spins.

The Ii–P dipole–dipole coupling between the fluorine
spin Ii and the spin P (where P denotes other fluorine spin
Ij or a lanthanum spin S) can be described in the laboratory
frame (L) by the Hamiltonian [7,15]:

H ðLÞDDðI i; P Þ ¼ aIiP
D

X2

m¼�2

ð�1ÞmD2
0;mðXL

IiP
ÞT 2;�mðI i; PÞ. ð1Þ

The particular components T2,�m (Ii, P) of the two-spin ten-
sor operator have the form: T 2;0 ¼ 1ffiffi

6
p ½2ðI iÞzP z� 1

2
ððI iÞþP�þ

ðI iÞ�SþÞ�, T 2;�1 ¼ � 1
2
½ðI iÞzP� þ ðI iÞ�P z�, T 2;�2 ¼ 1

2
ðI iÞ�P�,

while the dipole–dipole coupling constant is defined as:
aIiP

D ¼
ffiffiffi
6
p

l0

4p
cI cP �h
r3

IiP
, where rIiP is the Ii–P inter-spin distance

and the other symbols have their usual meaning. The Wig-
ner rotation matrices D2

0;mðXL
IiP
Þ describe the orientation of

the dipole–dipole axis for the pair of interacting spins with
respect to the laboratory frame, encoded in the set of Euler
angles XL

IiP
. The particular dipole–dipole interactions are

modulated by jumps of the fluorine ions between equiva-
lent (FA–FA, FB–FB) and non-equivalent (FA–FB) lattice
sites. Important information on the dynamics of the fluo-
rine ions in LaF3 has been gained from the analysis of
the fluorine lineshape [16,17], fluorine diffusion measure-
ment by NMR gradient techniques [18] and some earlier
relaxation studies performed at high magnetic field
[14,19]. In [16,17] the two different fluorine subsystems
have been clearly identified in the NMR spectrum by their
chemical shifts. It has been observed that fast fluorine mo-
tion within the FA sublattice leads to a narrowing of the
corresponding resonance line, while the FB line stays broad
until it collapses with the faster one. It is worthwhile to
mention that also other experimental techniques providing
directly some macroscopic physical quantities, like fluorine
conductivity [20,21] have been applied to investigate the
fluorine dynamics.

Lanthanum spins exhibit within the LaF3 crystal struc-
ture a static quadrupole coupling H 0

QðSÞ, defined as the
long-time averaged value of their quadrupole interaction,
H 0

QðSÞ ¼ hH QðSÞðtÞi. Since all crystallographic positions
of lanthanum ions are equivalent, quadrupole couplings
of individual spins, HQ (Si), can be described by one Ham-
iltonian HQ (S). The averaged part of the lanthanum quad-
rupole interaction is determined in the laboratory frame
(L) by the static quadrupole coupling constant a0

Q, the
asymmetry parameter g0 and the orientation of the princi-
pal axis system of the electric field gradient tensor relative
to the (L) frame, given by the angles XL

Q [7,15]

H 0ðLÞ
Q ¼ 1

2

ffiffiffi
3

2

r
a0

Q

Sð2S � 1Þ
X2

m¼�2

ð�1Þm

� D2
0;m XL

Q

� �
þ g0ffiffiffi

6
p D2

2;m XL
Q

� ���

þD2
�2;m XL

Q

� ��i
T 2;�mðSÞ. ð2Þ
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The single-spin tensor operators T2,�m (S) are now defined
as: T 2;0ðSÞ ¼ 1ffiffi

6
p ½3S2

z � SðS þ 1Þ�, T 2;�1ðSÞ ¼ � 1
2
½SzS�þ

S�Sz�, T 2;�2ðSÞ ¼ 1
2
S�S�.

The mutual dipole–dipole coupling between the non-
equivalent fluorine spins from the distinct sublattices FA

and FB implies that the rate of change of the component
of the FA spins along the z axis hIA

z i depends upon the com-
ponent of the FB spins hIB

z i and vice versa. The relevant lon-
gitudinal magnetizations exhibit biexponential recoveries,
and their evolution is governed by the set of equations
[1,6,14]:

d IA
z

� �
dt
¼ aAA IA

z

� �
� IA

z

� �
0

� �
þ aAB IB

z

� �
� IB

z

� �
0

� �
; ð3aÞ

d IB
z

� �
dt
¼ aBA IA

z

� �
� IA

z

� �
0

� �
þ aBB IB

z

� �
� IB

z

� �
0

� �
. ð3bÞ

The coefficients aAA, aBB, aAB, aBA contain in addition to
the specific dipolar relaxation rates, denoted respectively,
as RAA

1 , RBB
1 , RAB

1 , RBA
1 , the exchange rates s�1

AB, s�1
BA between

the non-equivalent lattice sites

aAA ¼ �RAA
1 �

1

sAB
; aAB ¼ �

N A

N B
RAB

1 þ
1

sBA
. ð4Þ

The remaining coefficient aBB, aBA can be obtained from
Eq. (4) by replacing the index A by B and vice versa. The
exchange lifetime sAB is related to sBA by the ratio of the
numbers of the fluorine spins in the subsystems FA and
FB: sAB ¼ NA

NB
sBA. The relaxation rates RAA

1 ðRBB
1 Þ contain

terms corresponding to the three relaxation pathways of
fluorine spins, created, respectively, by dipole–dipole cou-
plings within one sublattice RAA

1ðA!AÞðRBB
1ðB!BÞÞ, couplings be-

tween spins from different fluorine sublattices
RAA

1ðA!BÞðRBB
1ðB!AÞÞ and fluorine–lanthanum dipolar interac-

tions RAA
1ðA!LaÞðRBB

1ðB!LaÞÞ:

RAA
1 ¼ RAA

1ðA!AÞ þ RAA
1ðA!BÞ þ RAA

1ðA!LaÞ; ð5aÞ

RBB
1 ¼ RBB

1ðB!BÞ þ RBB
1ðB!AÞ þ RBB

1ðB!LaÞ. ð5bÞ

The first two contributions are given by the well known
expressions for the dipolar spin–lattice relaxation rates
for like and unlike nuclei with the spins 1/2, respectively
[1–4,6,7,14,15]:

RAA
1ðA!AÞ ¼

l0

4p
c2

I �h
� �2

IðI þ 1Þ J ð1ÞAAðxAÞ þ 4J ð2ÞAAð2xAÞ
h i

; ð6aÞ

RAA
1ðA!BÞ ¼

l0

4p
c2

I �h
� �2

IðI þ 1Þ 1
3

J ð0ÞABðxA � xBÞ
h

þ3J ð1ÞABðxAÞ þ 6J ð2ÞABðxA þ xBÞ
i
. ð6bÞ

The cross-relaxation rates RAB
1 ðRBA

1 Þ, linking the evolu-
tion of the magnetizations hIA

z i and hIB
z i, have also the

well-known forms [1,6,7,14,15]

RAB
1 ¼

l0

4p
c2

I �h
� �2

IðI þ 1Þ 1
3
�J ð0ÞABðxA � xBÞ
h

þ6J ð2ÞABðxA þ xBÞ
i
. ð7Þ
Corresponding expressions for the relaxation rates RBB
1 and

RBA
1 can be obtained by changing the indices A fi B and

B fi A in Eqs. (6) and (7). The spectral densities are related
to structural and motional parameters of the fluorine spins
in the LaF3 crystal lattice. We assume in this paper, follow-
ing [14], that the dipole–dipole correlation function for the

pair of fluorine spins I i � Ij : h
D2�

0;K ðX
L
Ii Ij
ðtÞÞ

r3
Ii Ij
ðtÞ

D2
0;K ðX

L
Ii Ij
ð0ÞÞ

r3
Ii Ij
ð0Þ i can be

modeled as a single exponential decay. This assumption
implies Lorentzian forms of the spectral densities occurring
in Eqs. (6a,6b,7,14,15)

J ðKÞab ðxÞ ¼
X

j

D2
0;K XL

IiIj

� �
r3

I iIj

0
@

1
A

2

2~sab

1þ x2~s2
ab

;

a; b ¼ A;B; I i 6¼ I j; ð8Þ

where the summation is performed over spins Ij from the
sublattice b involved in the relaxation processes of the
spin Ii from the a sublattice (a, b = A, B). The correlation
time ~sab describes the fluctuation of the dipole–dipole
coupling due to the motion of both coupled spins and
therefore it is determined by the superposition of the
two specific correlation rates s�1

A ; s�1
B : ~s�1

ab ¼ s�1
a þ s�1

b ,
containing the effects of ion jumps within the particular
sublattices (described by the time constants sAA and
sBB) and between them (sAB, sBA): s�1

A ¼ s�1
AA þ s�1

AB,
s�1

B ¼ s�1
BB þ s�1

BA .
To obtain a complete description of the fluorine spin

relaxation one needs to specify the contributions from lan-
thanum spins: RAA

1ðA!LaÞ and RBB
1ðB!LaÞ. Transitions of fluorine

spins leading to their longitudinal relaxation are accompa-
nied by lanthanum spin transitions between energy levels
determined by a superposition of the static quadrupole
interaction H 0

QðSÞ [Eq. (2)] and the lanthanum Zeeman
coupling HZ (S). The ‘classical’ SBM approach to dipolar
relaxation, developed under the assumption of a Zeeman
energy structure for both interacting spins, cannot be treat-
ed as a proper description of fluorine spin relaxation
caused by coupling to lanthanum spins, if the condition
HZðSÞ � H 0

QðSÞ is not fulfilled (i.e., if the quadrupole
effects on the energy level structure of the lanthanum spins
are non-negligible).

We wish to point out clearly that we assume in this
paper that the dipolar as well as the quadrupole spins
obey the conditions of the Redfield theory [5–7]. Apply-
ing the perturbation treatment to an arbitrary spin sys-
tem some caution must be exercised regarding its
validity conditions. The Redfield theory has two essential
limitations:

1. The perturbing Hamiltonian H1 (t) (expressed in the
angular frequency units) has to fulfill the condition:
|H1sc|	 1, where sc is the correlation time for the per-
turbing interaction. This condition implies that the
resulting relaxation timescale is much slower than the
fluctuations causing the relaxation.
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2. The main Hamiltonian H0 must obey the relation
|H0|� |H1||H1sc|, which guaranties that the oscillating
factors ðxaa0 � xbb0 Þt associated with the particular
relaxation rates Raa0bb0 and resulting from the transfor-
mation to the interaction representation (generated by
the main Hamiltonian) are effectively averaged out,
unless they are equal zero.

If the conditions are not fulfilled one cannot define explic-
itly time-independent relaxation rates. Therefore, the per-
turbation approach, in particular the Solomon
formulation, can be used to describe the fluorine relaxation
processes, if the dipole–dipole interactions responsible for
the relaxation fulfill the conditions jHDDðIa; IbÞ~sabj < 1
and jH DDðIa; SÞ~saLaj < 1. The strongest dipole–dipole inter-
actions in LaF3 are about 20 kHz. Thus, one can estimate
that the perturbation theory can be applied if the relevant
correlation times are shorter than 5 · 10�6 s. In fact the
time scales of the fluorine motion within the individual
sublattices, as well as between them depend strongly on
the temperature and eventual admixtures (for example by
Sr2+ ions, as we shall see later). The Redfield condition is
relatively easy to fulfill for these relaxation channels, which
involve the FA fluorine spins. They jump diffusion between
the equivalent lattice sites is the fastest dynamic process
within the LaF3 crystal lattice. According to the literature
data [14,17] the correlation time sAA is of the order
10�5–10�6 s at room temperature, and of the order
10�10 s at T = 1000 K [14], while the for the correlation
time sAB it has been obtained 10�4 s at room temperature
and 10�5–10�6 s at 1000 K [14]. It indicates that for higher
temperatures or crystals containing some admixtures the
perturbation approach to the fluorine spins relaxation is
appropriate. Nevertheless, for individual cases on should
consider with caution the validity conditions formulated
above.

3. Theory of spin–lattice relaxation of 1/2 spins induced by
dipole–dipole couplings to quadrupole spins

We formulate in the next section a general description of
frequency-dependent relaxation of a spin 1/2 through its
dipolar coupling to an ensemble of quadrupole spins, in
the framework of solid state dynamics, where jump diffu-
sion is the main motional process. Our model includes
dynamics of the quadrupole spins by a proper description
of their multiexponential and also frequency-dependent
relaxation. We prove that the general approach converges
to the Solomon expression in the high field limit.

3.1. Field-dependent relaxation of spins 1/2 by dipolar

couplings to quadrupole spins

Relaxation processes of a spin I caused by a mutual cou-
pling to a spin S can be described in the framework of the
Liouville formalism by the relaxation superoperator ^̂RI

defined as [22–27]
^̂R1ðI!SÞ ¼ �
Z 1

0

TrS
^̂LIS exp �i ^̂LI þ ^̂LS

� �
t

h i
^̂LIS qeq

S Þj
n o

dt;

ð9Þ

where ^̂LI and ^̂LS are Liouville operators for the spins I and
S, respectively, whereas ^̂LIS is the interaction Liouvilian. In
the considered case the operator ^̂LI is just generated by the
Zeeman Hamiltonian of the spin I, while the dipole–dipole
interaction provides the I–S coupling, represented by the
operator ^̂LIS . The operator ^̂LS covers the main interactions
for the spin S (the static quadrupole coupling and the Zee-
man interaction) as well as its relaxation dynamics. The
equilibrium density operator of the spin S is denoted as
qeq

S . To evaluate the relaxation operator according to the
above formulation it is necessary to isolate from the di-
pole–dipole Hamiltonian H ðLÞDD of Eq. (1), the part associat-
ed only with the dipolar spin I. One can achieve this
expressing the second order tensor operators T2,�m (I,S)
in terms of the first order tensors I1

n and S1
n [8–12,29]:

H ðLÞDDðI ; SÞ ¼ aIS
D

ffiffiffiffiffi
30
p X1

n¼�1

ð�1ÞnI1ðLÞ
�n

�
X1

q¼�1

2 1 1

n� q q �n

� 	
S1ðLÞ

q D2
0;n�q XL

IS


 �( )
;

ð10Þ
where the tensor components are related to the angular
momentum operators P 1

0 ¼ P z; P 1
�1 ¼ 1ffiffi

2
p P�; P ¼ I ; S;

andð 2 1 1
n� q q �n

Þ are the appropriate 3� j symbols.

The indexes (L) in the operators I1ðLÞ
�n and S1ðLÞ

q indicate
explicitly that we consider the representation of the di-
pole–dipole interaction in the laboratory frame. On the
background of Eq. (9) one can express the spin–lattice
relaxation of the spin I = 1/2 caused by the I–S dipole–di-
pole coupling as the real part of the complex dipolar
spectral density KDD

IS taken at the negative Larmor frequen-
cy of the spin I : R1ðI!SÞ ¼ 2RefKDD

IS ð�xIÞg [8–12]. The
spectral density results from Eq. (9) by inserting the
interaction Liouville superoperator ^̂LIS (generated by the
dipolar Hamiltonian of Eq. (10)) and the Liouvilian
^̂LI ¼ ½xI IZ ; . . .�

KDD
IS ð�xIÞ¼ 30

l0�hcIcS

4p

� 	2 1

2Sþ1

�
X
p;q

2 1 1

1�q q �1

� 	
2 1 1

1�p p �1

� 	

�
Z 1

0

TrS S1þðLÞ
q expð�i^̂LStÞS1ðLÞ

p

n o

�
D2�

0;1�q XL
ISðtÞ


 �
r3

ISðtÞ
D2

0;1�p XL
ISð0Þ


 �
r3

ISð0Þ

* +
expð�ixI tÞdt.

ð11Þ

The factor (2S + 1)�1 originates from the equilibrium
density operator qeq

S in the high temperature approximation
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[7–12]. Because of the limited space, the calculations are
not presented here in great detail. More comments and
explanations on the applied formalism are available as
Supplementary material. We separate in the above formu-
lation the correlation functions of the p–q components of
the dipolar coupling strength,

cqp
IS ðtÞ ¼ h

D2�
0;1�qðX

L
IS ðtÞÞ

r3
ISðtÞ

D2
0;1�pðX

L
IS ð0ÞÞ

r3
ISð0Þ

i, from the correlation func-

tions, TrSfS1þðLÞ
q exp ð�i^̂LStÞS1ðLÞ

p g, representing the S spin

dynamics. The quantities
D2

0;1�pðX
L
IS Þ

r3
IS

change in time due to

motion of the spin I, which neither affects the energy level
structure nor the relaxation processes of the spin S. There-
fore, the dynamics of the S spin is completely independent
of the spin I. We have assumed (setting up Eq. (8)) that the
correlation function cqp

IS ðtÞ, determined for solid state sys-
tems mainly by the jump diffusion, is single exponential

D2�
0;1�q XL

ISðtÞ

 �
r3

IS

D2
0;1�p XL

ISð0Þ

 �
r3

IS

* +

¼
D2�

0;1�q XL
IS


 �
r3

IS

D2
0;1�p XL

IS


 �
r3

IS

exp � s
~sIS

� 	
. ð12Þ

Thus, using the last step, one obtains for the spectral den-
sity KDD

IS ð�xIÞ the expression

KDD
IS ð�xIÞ ¼ 30

l0�hcIcS

4p

� 	2
1

2S þ 1

�
X
p;q

2 1 1

1� q q �1

� 	
2 1 1

1� p p �1

� 	

�
D2�

0;1�q XL
IS


 �
r3

IS

D2
0;1�p XL

IS


 �
r3

IS

rqp
S ð�xIÞ;

ð13Þ
where rqp

S ð�xIÞ represents the quadrupole spin spectral
density (including in addition to the S spin dynamics the
modulation of the mutual I–S dipole–dipole coupling by
the jump diffusion)

rqp
S ð�xIÞ ¼

Z 1

0

TrS S1þ
q exp � i^̂LS þ

1

~sIS
þ ixI

� 	
t

� �
S1

p

 �
dt.

ð14Þ
To calculate the spectral densities rqp

S ð�xIÞ, we turn to the
quadrupole spin dynamics and specify the Liouville opera-
tor ^̂LS . For this purpose we have to discuss in more details
the S spin relaxation.

We assume in this paper that the quadrupole spin fulfills
the requirements of the Redfield relaxation theory [1–7]. It
means that one can set up the equation of motion of the
quadrupole spin density operator ^̂rSðtÞ in the form

o

@t
^̂rSðtÞ

���� ¼ �^̂LS
^̂rSðtÞ

���� ¼ � ^̂L
0

S � i^̂RS

� 	
^̂rSðtÞ

���� . ð15Þ

The time-independent operator ^̂L
0

S is generated by the
main, unperturbed Hamiltonian H 0ðLÞ

S obtained as a combi-
nation of the Zeeman coupling H ðLÞz ðSÞ ¼ xSSz, where xS is
the quadrupole spin Larmor frequency and the static quad-
rupole interaction H 0ðLÞ

Q of Eq. (2): H 0ðLÞ
S ¼ H ðLÞz ðSÞ þ H 0

Q.
The index (L) indicates that we consider both interactions
in the laboratory frame. The quadrupole spin is quantized
along the principal axis of the main Hamiltonian H 0ðLÞ

S and
the energy level structure is given by its eigenvalues. The
second term in Eq. (15) contains the relaxation superoper-
ator ^̂RS . Most of the essential elements of the further con-
siderations of this chapter have been presented in the series
of papers [8–11], devoted to the problem of nuclear spin
relaxation enhanced by electron spin dynamics (the PRE
effects). However, for the sake of clarity and completeness
of the current paper dealing with solid state dynamics and
quadrupole spins, we provide some details of the evalua-
tion of the quadrupole spin relaxation. The Redfield theory
gives the quadrupole spin relaxation rates RS

aa0bb0 in terms of
the matrix elements of the relaxation superoperator ^̂RS,
connecting the evolution of the coherences ðrSÞaa0 and
ðrSÞbb0 [6,7,22,23,27]

dðrSÞaa0 ðtÞ
dt

¼ �ixaa0 ðrSÞaa0 ðtÞ

þ
X
bb0

RS
aa0bb0 ðrSÞbb0 ðtÞ � r0

S0

 �

bb0

� �
. ð16Þ

The appropriate Liouville basis fjwS
aihw

S
a0 jg is generated

by the set of eigenstates fjwS
aig of the main Hamiltonian

H 0ðLÞ
S . The frequency xaa0 ¼ xa � xa0 in Eq. (16) is the

transition frequency between the two energy levels Ea

and Ea0 corresponding to the eigenstates jwS
ai and jwS

a0 i.
The eigenstates jwS

ai can be expressed in terms of the
Zeeman basis functions of the quadrupole spin, |ræ = |S,
mSæ (S and mS are, respectively, the spin- and magnet-
ic-quantum numbers), by the relation: jwS

ai ¼PS
mS¼�ScamS jS;mSi, where the specific coefficients can be

obtained by a diagonalization of the matrix representa-
tion of the Hamiltonian H 0ðLÞ

S in the Zeeman basis
[9–11]. In the next step we aim at an explicit evaluation
of the quadrupole spin relaxation rates RS

aa0bb0 . They are
given as linear combinations of appropriate spectral den-
sities taken at frequencies corresponding to differences
between the energy levels [6,7,22,23,27,28]:

RS
aa0bb0 ¼ J S

aba0b; ðxabÞ þ J S
aba0b; ðxa0b0 Þ � da0b0

�
X

c

J S
acbcðxcbÞ � dab

X
c

J S
a0cb0cðxcb0 Þ. ð17Þ

Here we consider the quadrupole relaxation mechanism
provided by time fluctuations of the electric field gradient.
The fluctuations create a perturbing, time-dependent Ham-

iltonian HT ðLÞ
Q ðtÞ, defined as a deviation of the total quadru-

pole interaction H ðLÞQ ðtÞ from its average value:

HT ðLÞ
Q ðtÞ ¼ H ðLÞQ ðtÞ � hH

ðLÞ
Q ðtÞi ¼ H ðLÞQ ðtÞ � H 0ðLÞ

Q . Thus, the

spectral densities J S
aa0bbðxÞ are determined by the corre-

sponding matrix elements of the perturbing Hamiltonian

HT ðLÞ
Q in the eigenbasis fjwS

aig [6,7,22,23,27,28]



256 D. Kruk, O. Lips / Journal of Magnetic Resonance 179 (2006) 250–262
J S
aa0bb0 ðxÞ ¼

Z 1

0

wS
a HT ðLÞ

Q ð0Þ
��� ���wS

a0

D E
wS

b H T ðLÞ
Q ðtÞ

��� ���wS
b0

D E
� expð�ixtÞdt. ð18Þ

Employing the relationship between the eigenvectors jwS
ai

and the Zeeman functions |ræ = |S,mSæ one can represent
the Hamiltonian matrix elements hwS

a jH
T ðLÞ
Q jwS

a0 i as:
hwS

a jH
T ðLÞ
Q jwS

a0 i ¼
P

r;r0c
�
racr0a0 hrjHT ðLÞ

Q jr0i. Therefore, the spec-
tral densities J S

aa0bbðxÞ can be obtained explicitly from the
formula

J S
aa0bb0 ðxÞ ¼

X
r;r0

c�racr0a0c�r0bcrb0

Z 1

0

r H T ðLÞ
Q ð0Þ

��� ���r0D E

� r0 HT ðLÞ
Q ðtÞ

��� ���rD E
expð�ixtÞdt. ð19Þ

Assuming the ordinary representation of the Hamiltonian
HT ðLÞ

Q ðtÞ in terms of the tensor operators T2,�m (S) and cor-
responding spatial functions AmðtÞ : H T ðLÞ

Q ðtÞ ¼P2
m¼�2ð�1ÞmT 2;�mðSÞAmðtÞ the spectral densities J S

aa0bbðxÞ
can be related explicitly to the quantities
~J

S
mðxÞ ¼

R1
0
hA�mð0ÞAmðtÞi expð�ixtÞdt by the expression:Z 1

0

r H T ðLÞ
Q ð0Þ

��� ���r0D E
r0 H T ðLÞ

Q ðtÞ
��� ���rD E

expð�ixtÞdt

¼
X2

m¼�2

r T 2;�mj jr0h ij j2~J
S

mðxÞ. ð20Þ

Now, we can calculate explicitly the spectral densities
rpq

S defined by Eq. (14). The matrix representation of

the quadrupole spin operator �i^̂LS ¼ �i^̂L
0

S þ
^̂RS in the

Liouville basis set jwS
aihw

S
a0 j (the operator �i^̂L

0

S is repre-
sented by the transition frequencies �ixaa0 , Eq. (16))
can be easily adapted for the total operator in Eq.

(14) : �i^̂LS � ð 1
~sIS
þ ixIÞ^̂1, by including the diagonal

terms: 1
~sIS
þ ixI . The rank-one tensor operators for the

quadrupole spin S1
q can be also represented as matrices

in the same Liouville basis. However, to achieve this
we have to start from their representations in the basis
constructed from the Zeeman eigenstates |næ = |S,mSæ
[9–11,29]:

S1
0 ¼

XS

mS¼�S

mS S;mSj i S;mS ;h j ð21aÞ

S1
1 ¼ �

1ffiffiffi
2
p

XS�1

mS¼�S

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS � mSÞðS þ mS þ 1Þ

p
S;mS þ 1j i S;mSh j; ð21bÞ

S1
�1 ¼

1ffiffiffi
2
p

XS

mS¼�Sþ1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ mSÞðS � mS þ 1Þ

p
S;mS � 1j i S;mSh j. ð21cÞ

Using the above expansions of the tensor operators we
evaluate their representations in the Liouville basis
jwaihwa0 j, from the inverse relation between the Zeeman
states |ræ = |S,msæ and the eigenstates of the Hamiltonian
HSðLÞ
0 : jri ¼

P
aðc�1Þrajw

S
ai. The set of coefficients (c�1)ra

can be obtained by inverting the matrix c (with the coeffi-
cients car) describing the Zeeman representation of the
eigenstates jwS

ai. Thus, the explicit, closed form of the
quadrupole spectral densities rqp

S can be evaluated as, [9–
12]:

rqp
S ¼

X
lm

½aq��l i^̂L
0

S þ ixI
^̂
1þ ^̂RS þ

1

~sIS

^̂
1

� 	�1
" #

lm

½ap�m; ð22Þ

where the summation goes over all the Liouville states
jwS

aihw
S
a0 j. The vectors aq (called projection vectors in [8–

11]) contain the expansions coefficients of the tensor oper-
ators S1

q in the Liouville basis. The coefficients for S = 7/2,
appropriate for the lanthanum spins, are collected in
Appendix of [11].

The final expression for the spin–lattice relaxation rate
of a spin 1/2 due to a dipole–dipole coupling to a quadru-
pole spin S, obtained from Eq. (13) has the form (see Sup-
plementary material)

R1ðI!SÞ ¼
l0�hcIcS

4p

� 	2

SðS þ 1Þ 2

ð2S þ 1ÞSðS þ 1Þ

�Re
D2

0;0

r3
IS

�����
�����
2

r11
S þ 3

D2
0;1

r3
IS

�����
�����
2

r00
S þ 6

D2
0;2

r3
IS

�����
�����
2

r�1�1
S

8<
:

þ2
ffiffiffi
3
p D2�

0;0D2
0;1

r6
IS

r10
S þ 2

ffiffiffi
6
p D2�

0;0D2
0;2

r6
IS

r1�1
S

þ6
ffiffiffi
2
p D2�

0;1D2
0;2

r6
IS

r0�1
S

)
; ð23Þ

where it has been taken into account that rqp
S ¼ rpq

S . In
combination with the quadrupole spectral densities rqp

S

[Eq. (22)] it provides a tool for interpretation of field-de-
pendent relaxation studies on solid state systems contain-
ing dipolar and quadrupolar spins connected by mutual
dipole–dipole couplings.

To complete the quite general considerations some more
comments on the quadrupole spin spectral densities ~J

S

mðxÞ
[Eq. (20)] are appropriate. They must be evaluated accord-
ing to a motional model. Physical mechanisms of the lattice
dynamics causing modulations of the electric field gradient,
which lead to the lanthanum spin relaxation, are a sepa-
rate, complicate issue beyond the scope of the paper. How-
ever, one can express the lanthanum spin relaxation in
terms of spectral densities containing only two parameters:
an amplitude of the fluctuating part of the quadrupole
Hamiltonian DQ, and a time constant sQ reflecting the time
scale of the fluctuations:

~J
S

mðxÞ ¼
1

2

ffiffiffi
3

2

r
DQ

Sð2S þ 1Þ

" #2
2

5

sQ

1þ x2s2
Q

. ð24Þ

This simplifies the description of the quadrupole relaxation
as much as possible without losing its physical meaning. It
is important to notice a flexibility of our model: a more
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realistic description of the lattice dynamics relevant for the
quadrupole interaction can be incorporated into the model
in a straightforward manner by formulating a suitable
expression for the spectral density ~J

S

mðxÞ.
Finishing this section we would like to comment on a

very important aspect of the present approach. The essence
of this treatment is the hierarchy of events: the dynamics of
the quadrupole spin S is completely independent of the
dipolar spin I, but on the contrary the degrees of freedom
of the spin S influence strongly the relaxation processes of
the spin I. This condition is obviously fulfilled if the spin S

possesses an efficient relaxation pathway by its own. In the
case of an electron spin S P 1 this predominated relaxation
mechanism is provided by fluctuations of zero field split-
ting tensors [8–12] and it is in fact very efficient. The zero
field splitting relaxation supposes to be replaced by the
quadrupole interaction H T

QðtÞ for quadrupole spin systems.
However, in solid state phase relaxation processes of quad-
rupole spins caused by fluctuations of the electric field gra-
dient tensor occur on a rather long time-scale. The
quadrupole spin possesses also a second relaxation path-
way via the dipole–dipole coupling to the spin I, fluctuating
in time due to motion of the last one; actually in the case of
LaF3 due to the jump diffusion of the fluorine spins. If the
second relaxation mechanism dominates over the quadru-
pole one, one cannot treat the quadrupole spin dynamics
as independent of the presence of the dipolar spins. Never-
theless, if the quadrupole spin relaxation is slow (indepen-
dently of its origin) compared to other sources of the
modulations of the I–S dipole–dipole interaction, it can
be neglected from the perspective of the spin I altogether
and, in consequence one can describe the dipolar spin
relaxation within the present theory.

In the next section, we discuss the limiting case of a
dominating Zeeman interaction and a slow (relative to
the jump diffusion motion) quadrupole relaxation and
demonstrate that the general expression of Eq. (23) leads
to the well known formula of Eq. (6b) (adjusted for the dif-
ferent quantum number of the S spin and its different gyro-
magnetic factor).
3.2. Limiting cases

If the dynamic processes encoded in the correlation time
~sIS are on a rapid time scale relative to the quadrupole
relaxation, they provide the dominant contribution to the
time fluctuations of the dipole–dipole coupling and the
quadrupole relaxation in Eq. (22) may be omitted, as it
has been discussed in the previous section. The off-diagonal
elements of the Liouville supermatrix vanish in this case,
while the diagonal part is given by the simplified operator

i^̂L
0

S þ ixI
^̂
1þ 1

~sIS

^̂
1, with only one, field-independent correla-

tion time ~sIS . Thus, the resulting dipolar spin relaxation
rate R1(I fi S) can be expressed as a sum of spectral densities

of the form 2~sIS

1þx2~s2
IS
, where the static quadrupole coupling

affects the frequencies x, containing besides the Larmor
frequency xI of the spin I, the transition frequencies of
the spin S between its energy levels. If the Zeeman coupling
of the spin S dominates over the static quadrupole interac-

tion, jH ZðSÞj � jH 0
Qj the quadrupole spin exhibits obvious-

ly an energy level structure very close to the Zeeman one
and the Zeeman states |mSæ form now the appropriate
Liouville basis. Looking at the representation of the oper-

ators S1
q given by Eqs. (21a–c) one can easily conclude that

the cross terms rpq
S , p „ q vanish. The remaining terms rpp

S

take the form

rpp
S ¼

1

3

SðS þ 1Þð2S þ 1Þ
2

2~sIS

1þ xp
S þ xIð Þ2~s2

IS

; ð25Þ

where the spectral density r00
S , corresponding to the Sz

operator, does not contain any transition frequency of
the spin Sðx0

S ¼ 0Þ, while the terms r11
S and r�1�1

S generated
by S+ and S� operators include the frequencies �xS and
xS, respectively ðx1

S ¼ �xS ; x�1
S ¼ xSÞ. Thus, in the high

field limit and for slow relaxation processes of the quadru-
pole spin, the expression of Eq. (23) converges to the Solo-
mon formulation:

R1ðI!SÞ ¼
l0

4p
cIcS�h

� �2

SðS þ 1Þ

� 1

3
J ð0ÞIS ðxI � xSÞ þ 3J ð1ÞIS ðxIÞ þ 6J ð2ÞIS ðxI þ xSÞ
h i

ð26aÞ
with the spectral densities J ðKÞIS ðxÞ defined by Eq. (8) and
written now for the I–S pair of spins

J ðKÞIS x1�K;1�K
S þxI


 �
¼

D2
0;K XL

IS


 �
r3

IS

 !2
2~sIS

1þ x1�K;1�K
S þxI


 �2
~s2

IS

.

ð26bÞ
Now we turn to the problem of field-dependent fluorine

spin relaxation in the LaF3 system and complete the
description presented in Section 2.

4. Applications to the LaF3 spin system

To get a complete description of the fluorine spin relax-
ation in the LaF3 crystal lattice, valid for an arbitrary mag-
netic field, we need to specify the terms Raa

1ða!LaÞ describing
the relaxation of the fluorine spins from the sublattice
a(a = A,B) due to their coupling to the lanthanum spins.
The relaxation rates Raa

1ða!LaÞ can be obtained from Eq.

(23) by replacing the quantities
D2�

0;1�qðX
L
ISÞD

2
0;1�pðX

L
ISÞ

r6
IS

(corre-

sponding only to one spin S) by the appropriate lattice
sums over the lanthanum spins Si involved in the relaxation

of the fluorine spin Ia :
P

i

D2�
0;1�qðX

L
IaSi
ÞD2

0;1�pðX
L
IaSi
Þ

r6
IaSi

. Since the lan-

thanum ions are fixed in their sublattice, the correlation
time ~sIS is determined only by the motion of the fluorine
ions and is given by ~s�1

ALa ¼ s�1
AA þ s�1

AB and ~s�1
BLa ¼ s�1

BB þ s�1
BA.

Finally, one also has to set cI = cF, cS = cLa, xS = xLa

and xI = xa.
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The biexponential behavior of the fluorine magnetiza-
tion becomes apparent by writing explicitly the solution
of the set of equations, Eqs. (3a) and (3b)

R�1I ¼ �
1

2
ðaAA þ aBBÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaAA � aBBÞ2 þ 4aABaBA

q� �
. ð27Þ

The experimental data presented in the next section corre-
sponds to the slower relaxation process.

Since we have experimental evidence that lanthanum
spin relaxation is slow in the LaF3 crystals (the lantha-
num spin–lattice relaxation time measured at 8.5 T is
of the order of tenths of ms) we neglect it altogether
and focus our attention on the effects of the energy level
structure of the quadrupole spins affecting the relaxation
of the fluorine spins. We demonstrate in the next section
that the quantization of the lanthanum spins is of pri-
mary importance for the dynamics of the dipolar fluorine
spins.

5. Analysis of experimental results and discussion

We present examples of experimental relaxation profiles
for fluorine spins in LaF3 crystals, collected in the frequen-
cy range 2 · 104–4 · 107 Hz, and apply our model to under-
stand the observed frequency dependencies.

The relaxation rates have been measured as a function
of the magnetic field using the field cycling technique. This
means, that the applied magnetic field has been switched
during the experiment: the sample has been polarized in a
high magnetic field and the measuring process, i.e., record-
ing an FID following a 90� RF-pulse, took also place in a
high magnetic field. Between these phases the field has been
switched to a lower, adjustable value, in which the relaxa-
tion took place. Since the total fluorine magnetization has
been monitored in the experiments, a biexponential decay
according to Eq. (27) is expected. Nevertheless, only single
exponential decays have been observed, which is due to the
fact that the relative weight of the faster component is
mostly negligible. Furthermore, the corresponding relaxa-
tion rates easily get too fast to be measured by the field-cy-
cling technique due to the limited switching time of the
magnetic field. As a consequence the measured fluorine
relaxation rates correspond to the slower process, described
by the quantity R�1I in Eq. (27).

The coefficients aaa contain the terms Raa
1ða!LaÞ predicted

by the general model of Eq. (23) with the appropriate lat-
tice sums collected in Appendix A. The static quadrupole
coupling of the lanthanum spins in the LaF3 crystal lattice
is set to a0

Q ¼ 15 MHz, while the asymmetry parameter is
g0 = 0.8 [30]. The orientation of the electric field gradient
tensor with respect to the laboratory frame is given by
the angle XðLÞQ ¼ ð0; 54
; 0Þ [31]. We neglect the relaxation
of lanthanum spins altogether, reducing the number of
adjustable parameters. We only need to consider the diffu-
sion of fluorine spins reflected by the three time constants:
sAA, sBB and sBA. Since experimental fluorine NMR spectra
show that the motion inside the sublattice FB is relatively
slow [14,17,32] only the two parameters, sAA and sBA,
become relevant for our analysis. Since the time constants
characterize different motional processes, they are uncorre-
lated. The same NMR spectra give us information about
the chemical shift between the fluorine spins belonging to
different sublattices: �170 ppm. The relevance of the
Raa

1ða!LaÞ relaxation channel compared to the fluorine ones
Raa

1ða!aÞ and Raa
1ða!bÞ is determined by the factor

c2
S SðSþ1Þ
c2

I IðIþ1Þ
(which is equal to 0.47 in the case of the lanthanum S

and fluorine I spins) scaled by the ratio of the correspond-
ing lattice sums. In addition, one should take into account
that the correlation times for the fluorine–lanthanum relax-
ation channels are longer than the correlation times associ-
ated with the corresponding fluorine–fluorine relaxation
pathways, because in the first case only the fluorine spins
are mobile (the lanthanum ions are fixed). In consequence,
the efficiency of the fluorine spin relaxation due to the cou-
pling to the lanthanum spins is comparable to the efficiency
of the fluorine–fluorine relaxation.

In Figs. 2A and B fluorine relaxation profiles for a pure
LaF3 crystal collected at four temperatures: 700, 800
(Fig. 2A) and 750, 850 K (Fig. 2B) are shown. Together
with the experimental results we present curves obtained
by least-square fitting of the theoretical model with the
two adjustable parameters sAA and sBA. We set
sBB = 5 · 10�5 s, however, this time constant even changed
by an order of magnitude, does not influence significantly
the theoretical curves. We have obtained for the particular
temperatures—700 K:sAA = 2.8 · 10�8 s, sBA = 3.1 · 10�6

s; 750 K: sAA = 1.1 · 10�8 s, sBA = 1.2 · 10�6 s; 800 K:
sAA = 6.3 · 10�9 s, sBA = 2.6 · 10�7 s; and 850 K:
sAA = 5.2 · 10�9 s, sBA = 1.2 · 10�7 s.

To visualize the effect of the energy level structure of the
lanthanum spins, determined for an arbitrary magnetic
field by the static quadrupole interaction in combination
with the Zeeman coupling, we plot in Figs. 2A and B cor-
responding theoretical curves for the same parameters but
obtained from the Solomon formulation, Eq. (26a), for the
terms Raa

1ða!LaÞ. The two descriptions agree in the high field
limit, as discussed in Section 4. However, if the condition
HZðSÞ � H 0

QðSÞ is not fulfilled the static quadrupole cou-
pling of the lanthanum spins has a profound influence on
the fluorine spin relaxation. Such effects have been dis-
cussed for static zero field splitting affecting electron spin
energy levels and influencing in this way nuclear spin relax-
ation [8–12].

Frequency-dependent relaxation studies in ionic crystals
(like LaF3) are an attractive source of information about
the ion dynamics causing high conductivity of ionic mate-
rials. Some interesting aspects of motional heterogeneity
and dynamic models leading to non-exponential correla-
tion functions [32] can be discussed on the background of
relaxation experiments. To consider fine features of lattice
dynamics for systems containing quadrupole spins one
needs to describe properly the effects of the quadrupole
spin quantization and its multiexponential, field-dependent
relaxation (if there is no justification that the relaxation is



Fig. 3. Experimental fluorine spin relaxation rates for the LaF3 crystal
containing 0.01% Sr2+ admixtures collected at the temperatures T = 700 K
(solid squares) and T = 800 K (open squares). Predictions of the present
theoretical approach are shown as solid lines; T = 700 K;
sAA = 1.1 · 10�8 s, sBA = 1.1 · 10�6 s; T = 800 K: sAA = 3.3 · 10�9 s,
sBA = 4.8 · 10�7 s. Corresponding Solomon results are presented as the
dashed (700 K) and dotted (800 K) lines.

A

B

Fig. 2. Experimental fluorine spin relaxation rates for the pure LaF3

crystal at the temperatures: (A) T = 700 K (solid squares) and T = 800 K
(open squares), (B) T = 750 K (solid circles) and T = 850 K (open circles).
Theoretical predictions of the present model obtained for
sAA = 2.8 · 10�8 s, sBA = 3.1 · 10�6 s (700 K); sAA = 1.1 · 10�8 s,
sBA = 1.2 · 10�6 s (750 K); sAA = 6.3 · 10�9 s, sBA = 2.6 · 10�7 s (800 K)
and sAA = 5.2 · 10�9 s, sBA = 1.2 · 10�7 s (850 K) are presented as solid
lines. Corresponding theoretical dependencies obtained from the Solomon
formulation of the terms R1ðF a–LaÞ, calculated for the same set of the
parameters sAA, sBA are presented as the dashed (700, 750 K) and dotted
(800, 850 K) lines.
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negligible comparing to other sources of modulations of
the mutual dipolar-spin-quadrupole–spin dipole–dipole
coupling).

The discussed fluorine relaxation profiles (Figs. 2A and
B) cannot be reproduced within the SBM formulation of
the fluorine–lanthanum relaxation rates, Raa

1ða!LaÞ, by
adjusting the correlation times sAA and sBA. To obtain an
acceptable agreement with the experiments, one needs to
allow a wide distribution of at least one of them. The same
situation takes place in the case of fluorine relaxation in
LaF3 crystals doped slightly by Sr2+ ions. The doping influ-
ences the fluorine dynamics by introducing vacancies into
the crystal lattice. In Figs. 3, 4A and B we present further
examples of experimental fluorine relaxation profiles ana-
lyzed on the background of the present model. The profiles
in Fig. 3 are obtained for 0.01% concentration of Sr2+ ions
in LaF3 crystal lattice at the temperatures 700, 800 K and
while Figs. 4A and B show fluorine relaxation data for
LaF3 crystal containing 0.3% Sr2+ ions, collected at the
temperatures: 550 and 600 K. The correlation times sAA

and sBA fitted to the experimental data are—700 K:
sAA = 1.1 · 10�8 s, sBA = 1.1 · 10�6 s; 750 K: sAA =
4.9 · 10�9 s, sBA = 5.3 · 10�7 s; 800 K: sAA = 3.4 · 10�9 s,
sBA = 4.8 · 10�7 s and 850 K: sAA = 2.5 · 10�9 s, sBA =
2.5 · 10�7 s for the material LaF3 + 0.01%Sr2+; and
550 K: sAA = 9.5 · 10�9 s, sBA = 3.1 · 10�6 s; 600 K:
sAA = 6.4 · 10�9 s, sBA = 2.5 · 10�6 s, for the material
LaF3 + 0.3%Sr2+.

Calculating the corresponding Solomon curves, we show
that the proposed model and the traditional Solomon
description predict at low field very different fluorine spin
relaxation. To illustrate the statement, that one cannot
obtain a satisfactory agreement with the experimental data
on the background of the Solomon theory, we display also
in Fig. 4B the result of analyzing the experimental data
within the framework of the Solomon approach. The price
one has to pay for the agreement at the low field, are signif-
icant discrepancies for higher magnetic fields. Therefore,
even though the mean values of the sAA correlation time
reported in [32] are comparable with the present results,
the distribution of the correlation times assumed in [32]
results from the oversimplified treatment of the fluorine–
lanthanum relaxation pathway.

We wish to comment at the end, two features of the
experimental fluorine relaxation data. We observe, espe-
cially in Figs. 4A and B that the fluorine relaxation profiles
exhibit a plateau (or even a small maximum) at the fre-
quencies >107 Hz. The relaxation rate does not decay to
zero as expected. The investigated crystals contain unfortu-



A

B

Fig. 4. Experimental fluorine spin relaxation rates for the LaF3 crystal
containing 0.3% Sr2+ admixtures collected at the temperatures: (A)
T = 550 K and (B) T = 600 K. The solid lines show fluorine spin
relaxation calculated on the background of the present model for
sAA = 9.5 · 10�9 s, sBA = 3.1 · 10�6 s (550 K) and sAA = 6.4 · 10�9 s,
sBA = 2.5 · 10�6 s (600 K), while corresponding predictions of the Solo-
mon theory are presented as the dashed line. The dashed-dotted line in
Fig. 4B represents calculations performed on the background of the SBM
theory (applied to the terms R1ðF a–LaÞ) for the set of parameters:
sAA = 5.4 · 10�9 s, sBA = 2.8 · 10�7 s, resulting in a good agreement with
the experimental data at low field.
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nately some paramagnetic impurities inducing an addition-
al relaxation of neighboring fluorine spins. Taking into
account typical profiles of paramagnetically induced nucle-
ar spin relaxation, being constant in a wide frequency range
and finally, after an eventual maximum decaying to zero,
one could estimate this contribution and emulate it by add-
ing a constant; for example ca. 20 s�1 for the relaxation
profile presented in Fig. 4B. We decided to neglect this
effect altogether.

The second effect, we wish to comment is well visible in
most of the presented cases in the frequency range 106–
5 · 106 kHz and requires more attention. The relaxation
profiles exhibit local maxima, caused by polarization trans-
fer effects between fluorine and lanthanum spins. Fluorine
polarization can be taken over, under certain conditions,
by lanthanum spins. In the experiment, this effect is detect-
ed as a faster decay of the fluorine magnetization and inter-
preted as a local increasing (maximum) of the fluorine
relaxation rate. The fluorine polarization can be trans-
ferred to lanthanum when the transition energy of fluorine
spins (determined by their Zeeman interaction) is equal to
some transition energies of lanthanum spins (determined
by the lanthanum Zeeman- and quadrupole interactions)
and if there is an efficient static I–S dipole–dipole coupling.
The requirement that the mutual dipole–dipole interaction
must be sensed by the participating spins as time indepen-
dent means that the motional modulations of the relevant
dipole–dipole coupling must be significantly slower than
the fluorine spin relaxation. The FB–La dipole–dipole cou-
pling fluctuates in time slower than the FA–La one, and is
mainly modulated by the inter-lattice exchange, sBA. We
tried to reproduce the relaxation profiles assuming the
exchange lifetime sBA long enough to exclude the FB–La

dipole–dipole coupling as a relaxation pathway
ðjH DD

B!LasBAj � 1Þ and treat it as the polarization transfer
channel. It turned out that one cannot reproduce the fluo-
rine relaxation profiles slowing down the exchange process.
In addition, the time-scale of the exchange effects obtained
from the already presented least-square fit has another
experimental confirmation; it can be also deduced from
fluorine line-shapes. Therefore, the observed polarization
transfer effects suggest the presence of a relatively small
fraction of weak-mobile fluorine ions, so that their dipolar
interactions with lanthanum could cause the polarization
transfer without significant effects on the relaxation picture.

6. Conclusions

We have developed a general model of field-dependent
relaxation processes in solid state systems containing dipo-
lar as well as quadrupole spins with mutual dipole–dipole
couplings, valid for an arbitrary magnetic field. We have
discussed in detail effects of the quadrupole spins energy
level structure and their multiexponential relaxation on
relaxation processes of the dipolar spins comparing the
present description with the classical Solomon–Bloember-
gen–Morgan approach. Analogies between systems con-
taining nuclear spins 1/2 coupled to electron spins and
nuclear spins 1/2 coupled to quadrupole spins have been
pointed out to give a better and more general understand-
ing of dipolar relaxation processes in the presence of neigh-
boring high spins.

The present approach has been applied to analyze fluo-
rine spin–lattice relaxation processes in LaF3 crystals con-
taining two distinct fluorine sublattices. Comparisons with
the Solomon predictions have been reported to show the
necessity of an advanced theoretical treatment.

We believe that the theory presented in this paper,
together with the illustrative calculations performed for
the LaF3 system can be useful for interpreting and under-
standing of field-dependent relaxation studies for variety
of systems containing quadrupole spins.
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Appendix A

The lattice sums Sm
F a!F b

, a = 1,2,3, m = 0,1,2 are

defined as Sm
F a!F b

¼
P

i

ðD2
0;mðX

L
IaðIbÞi

ÞÞ2

r6
IaðIbÞi

. The summation is per-

formed over fluorine spins (Ib)i belonging to the sublattice
b and involved in relaxation processes of the fluorine spin
Ia from the sublattice a. They are expressed in m�6 and list-
ed below:

S0
F 1!F 1

¼ 4:08� 1057; S1
F 1!F 1

¼ 2:67� 1057;

S2
F 1!F 1

¼ 2:7� 1057

S0
F 2!F 2

¼ 9:56� 1056; S1
F 2!F 2

¼ 1:48� 1056;

S2
F 2!F 2

¼ 2:56� 1056

S0
F 3!F 3

¼ 8:41� 1056; S1
F 3!F 3

¼ 1:74� 10565;

S2
F 3!F 3

¼ 3:1� 1055

S0
F 1!F 2

¼ 5:69� 1056; S1
F 1!F 2

¼ 2:03� 1057;

S2
F 1!F 2

¼ 1:37� 1057

S0
F 2!F 1

¼ 1:71� 1057; S1
F 2!F 1

¼ 6:09� 1057;

S2
F 2!F 1

¼ 4:12� 1057

S0
F 1!F 3

¼ 1:80� 1056; S1
F 1!F 3

¼ 8:23� 1056;

S2
F 1!F 3

¼ 6:64� 1056

S0
F 3!F 1

¼ 1:08� 1057; S1
F 3!F 1

¼ 4:94� 1057;

S2
F 3!F 1

¼ 3:98� 1057

S0
F 2!F 3

¼ 1:51� 1056; S1
F 2!F 3

¼ 1:01� 1056;

S2
F 2!F 3

¼ 2:48� 1056

S0
F 3!F 2

¼ 3:03� 1056; S1
F 3!F 2

¼ 2:01� 1056;

S2
F 3!F 2

¼ 4:95� 1056

The lattice sums Sm
F a!La ¼

P
i

ðD2
0;mðX

L
IaSi
ÞÞ2

r6
IaSi

are obtained by

adding the contribution from the lanthanum spins Si, rele-
vant for relaxation of the fluorine spin Ia from the sublat-
tice a.

S0
F 1!La ¼ 4:71� 1057; S1

F 1!La ¼ 2:6� 1057;

S2
F 1!La ¼ 2:17� 1057

S0
F 2!La ¼ 3:36� 1057; S1

F 2!La ¼ 1:23� 1057;

S2
F 2!La ¼ 5:45� 1057

S0
F 3!La ¼ 3:91� 1057; S1

F 3!La ¼ 3:56� 1056;

S2
F 3!La ¼ 5:53� 1057
Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/
j.jmr.2005.12.009.
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